Saudi Journal of Gastroenterology
Home About us Instructions Ahead of print Submission Subscribe Advertise Contact Login    Print this page  Email this page Small font sizeDefault font sizeIncrease font size 
Users Online: 1651 


 
Table of Contents   
SYSTEMATIC REVIEW/META ANALYSIS  
Year : 2018  |  Volume : 24  |  Issue : 4  |  Page : 201-210
Protective association of TNFSF15 polymorphisms with Crohn's disease and ulcerative colitis: A meta-analysis


1 Department of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University. (Guangdong Gastrointestinal Hospital), Guangzhou, Guangdong, People's Republic of China
2 Department of Endoscopy, The Sixth Affiliated Hospital of Sun Yat-sen University. (Guangdong Gastrointestinal Hospital), Guangzhou, Guangdong, People's Republic of China
3 Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University. (Guangdong Gastrointestinal Hospital), Guangzhou, Guangdong, People's Republic of China
4 Department of Gastroenterology; Department of Clinical Nutrition, The Sixth Affiliated Hospital of Sun Yat-sen University. (Guangdong Gastrointestinal Hospital); Guangdong Gastrointestinal Institutes, Guangzhou, Guangdong, People's Republic of China

Click here for correspondence address and email

Date of Web Publication27-Jul-2018
 

   Abstract 


Background/Aims: Three extensively investigated polymorphisms (rs3810936, rs7848647, and rs6478108) in tumor necrosis factor super family member 15 (TNFSF15) gene have been implicated in risk for inflammatory bowel disease (IBD). We performed a quantitative synthesis of the evidence to clarify these associations of TNFSF15 polymorphisms with IBD.
Materials and Methods: Data were extracted from PubMed and EMBASE, up to March 15, 2018. Meta-analysis was performed by critically reviewing five studies for rs3810936 polymorphism (2251 cases and 2442 controls), four studies for rs7848647 polymorphism (1503 cases and 1816 controls), and four studies for rs6478108 polymorphism (1502 cases and 1817 controls).
Results: Our analysis suggested that rs3810936 polymorphism was significantly associated with decreased risk of Crohn's disease (CD) and ulcerative colitis (UC). For rs7848647 polymorphism, significantly protective association between this polymorphism and CD risk was also observed, but not in UC. For rs6478108 polymorphism, we also detected a significantly protective association with CD risk in all genetic model but not in UC.
Conclusions: This meta-analysis suggests that TNFSF15 polymorphisms may contribute to genetic susceptibility of IBD.

Keywords: Inflammatory bowel diseases, meta-analysis, polymorphism, TNFSF15

How to cite this article:
He L, Chen J, Sun J, Peng J, He Q. Protective association of TNFSF15 polymorphisms with Crohn's disease and ulcerative colitis: A meta-analysis. Saudi J Gastroenterol 2018;24:201-10

How to cite this URL:
He L, Chen J, Sun J, Peng J, He Q. Protective association of TNFSF15 polymorphisms with Crohn's disease and ulcerative colitis: A meta-analysis. Saudi J Gastroenterol [serial online] 2018 [cited 2018 Oct 21];24:201-10. Available from: http://www.saudijgastro.com/text.asp?2018/24/4/201/233793





   Introduction Top


The inflammatory bowel diseases (IBD), including Crohn's diseases (CD) and ulcerative colitis (UC), are characterized by chronic progressive diseases of the gastrointestinal tract resulting from interactions between host genotypes and the microbiome.[1],[2] Many environmental and lifestyle factors including diet, environmental carcinogens, and dwelling condition have been reported to be associated with an elevated IBD risk, but IBD are complex diseases in which the susceptibility depends on both genetic predisposition and environmental exposure. Intense and inappropriate mucosal immune responses to constituents of the intestinal microbiota contribute to the genesis of IBD, and these are determined by complex poorly understood genetic factors that confer vulnerability.[3],[4] However, only a minority of those exposed to changes in gut microbiota, that maintain homeostasis of the mucosal surface, eventually develop IBD, suggesting that genetic factors, such as single nucleotide polymorphisms (SNPs), may be crucial in modifying the risk for IBD.[5],[6]

The tumor necrosis factor super family member 15 gene (TNFSF15) is a strong candidate IBD gene encoding a novel TNF-like factor. Previous immunological studies have demonstrated that increased TNFSF expression by macrophages, lymphocytes, and plasma cells in intestinal tissue from IBD patients compared to normal controls is further upregulated in inflamed intestine.[7] TNFSF15 binds to specific T-cell receptors and enhances in mucosal CD4+ T cells in synergy with interleukins 12 and 18 (IL12 and 18).[8]

To date, several epidemiologic studies have been performed to elucidate the effect of TNFSF15 polymorphism on IBD risk. TNFSF15 was the first CD-susceptibility gene identified through a genome-wide association screening (GWAS) of 72,738 SNPs in the Japanese population.[9] The association was well replicated in Korean and US populations.. The results of previous studies remain inconsistent across these studies due to limitations in individual studies to examine the association between TNFSF15 polymorphisms and the risk of IBD.


   Materials and Methods Top


Search strategy

All relevant studies on the association between TNFSF15 polymorphisms and IBD risk published up to March 15, 2018 were identified through literature searches using PubMed, EMBASE, Cochrane Library, and Web of Science, with the following terms and keywords: (“the tumor necrosis factor super family member 15” or “TNFSF15”) and (“polymorphism” or “variation” or “mutation”) and (“inflammatory bowel disease” OR “IBD” or “Crohn's diseases” or “CD” or “Ulcerative Colitis” or “UC”). The references cited in all studies were also reviewed to identify additional published articles, which were potentially not indexed by the above databases.

Inclusion criteria

Studies which met the following criteria were included in our meta-analysis: (1) A case–control study evaluating the TNFSF15 polymorphisms; (2) studies with full-text articles; (3) containing enough data for estimating the odds ratios (ORs) with the corresponding 95% confidence interval (CI); (4) no overlapping data.

Data extraction

Information was carefully extracted from all the eligible studies independently by two researchers according to the inclusion criteria listed above and a consensus reached on all the eligibility terms of reference. The following data were collected from each study: first author, publication year, total numbers of cases and controls, numbers of cases and controls for CD and UC, and result of the Hardy-Weinberg equilibrium (HWE) test. We did not define any minimum number of patients for inclusion in our meta-analysis.

Statistical analysis

Odds ratios with a corresponding 95% CI were used as the common measure of assessing the strength of association between TNFSF15 polymorphisms (rs3810936, rs7848647, and rs6478108) and IBD risk for each study. The pooled ORs were calculated in additive model (a allele vs. A allele, a was for the minor allele and A was for the major allele), dominant model (aa + Aa vs. AA), recessive model (aa vs. Aa + AA), and co-dominant model (aa vs. AA, Aa vs. AA).[10] The significance of the pooled ORs was determined by Z-test, and the level of statistical significance was established as P < 0.05. The heterogeneity among studies was checked by the Q-test.[11] The I² statistic, which is a quantitative measure of the proportion of the total variation across studies due to heterogeneity,[12] was also calculated. If the P value for the heterogeneity test was >0.05, the Mantel–Haenszel method-based fixed effects model was used to calculate the pooled OR.[13] Otherwise, the DerSimonian and Laird method-based random effects model was performed.[14] Potential publication bias was evaluated by visual inspection of the Begg funnel plots in which the standard error of log (OR) of each study was plotted against its log (OR). We also performed Egger's linear regression test (P < 0.05 was considered a significant publication bias).[15] All statistical analyses were performed using software programs STATA version 12.0 (Stata, College Station, TX, USA).


   Results Top


Extraction process and study characteristics

According to our search criterion, 164 articles were retrieved. Among them, the majority were excluded after the first screening based on abstracts or titles, mainly because for reasons of overlapped citations, not relevant to the TNFSF15 polymorphisms and IBD risk, reviews, conference abstracts, or not a related gene polymorphism. Eventually, a total of five case–control studies were selected,[16],[17],[18],[19],[20] including five studies for rs3810936 polymorphism (2251 cases and 2442 controls), four studies for rs7848647 polymorphism (1503 cases and 1816 controls), and four studies for rs6478108 polymorphism (1502 cases and 1817 controls) [Figure 1]. The characteristics of these included studies and the genotype distribution and allele frequency of TNFSF15 polymorphisms in case- and control-studies are shown in [Table 1].
Figure 1: Flow of included studies

Click here to view
Table 1: Characteristics of studies included in the meta-analysis and their genotype distributions of TNFSF15 polymorphisms

Click here to view


Overall analyses of outcomes

The main results of the meta-analysis are shown in [Table 2]. Our results revealed that rs3810936 polymorphism was significantly associated with decreased risk of CD (T/T vs. C/C: OR = 0.38, 95% CI = 0.19–0.76, P = 0.000; C/T vs. C/C: OR = 0.57, 95% CI = 0.43–0.74, P = 0.003; recessive model: OR = 0.50, 95% CI = 0.30–0.84, P = 0.000; dominant model: OR = 0.51, 95% CI = 0.36–0.72, P = 0.000; additive model: OR = 0.59, 95% CI = 0.44–0.79, P = 0.000 [Figure 2] and [Table 2]); and UC (T/T vs. C/C: OR = 0.53, 95% CI = 0.34–0.81, P = 0.000; C/T vs. C/C: OR = 0.64, 95% CI = 0.51–0.81, P = 0.003; recessive model: OR = 0.54, 95% CI = 0.36–0.83, P = 0.000; additive model: OR = 0.82, 95% CI = 0.69–0.97, P = 0.000 [Figure 3] and [Table 2]). For rs7848647 polymorphism, significantly protective association between this polymorphism and CD risk was also observed (T/T vs. C/C: OR = 0.27, 95% CI = 0.15–0.47, P = 0.000; C/T vs. C/C: OR = 0.50, 95% CI = 0.28–0.89, P = 0.003; recessive model: OR = 0.36, 95% CI = 0.27–0.49, P = 0.000; dominant model: OR = 0.44, 95% CI = 0.25–0.80, P = 0.000; additive model: OR = 0.52, 95% CI = 0.36–0.76, P = 0.000 [Figure 4] and [Table 2]), but not in UC. For rs6478108 polymorphisms, we also detected significantly protective association with CD risk (C/C vs. T/T: OR = 0.27, 95% CI = 0.15–0.47, P = 0.000; T/C vs. T/T: OR = 0.52, 95% CI = 0.28–0.97, P = 0.003; recessive model: OR = 0.36, 95% CI = 0.27–0.48, P = 0.000; dominant model: OR = 0.46, 95% CI = 0.24–0.86, P = 0.000; additive model: OR = 0.53, 95% CI = 0.36–0.80, P = 0.000 [Figure 5] and [Table 2]) in all genetic models but not in UC.
Figure 2: Forest plots of ORs with 95% CI for TNFSF15 rs3810936 polymorphism and the risk of CD (random effects). The center of each square represents the OR, the area of the square is the number of sample and thus the weight used in the meta-analysis, and the horizontal line indicates the 95% CI. (1) Recessive model. (2) Dominant model. (3) T/T vs. C/C. (4) C/T vs. C/C. (5) Additive model

Click here to view
Figure 3: Forest plots of ORs with 95% CI for TNFSF15 rs3810936 polymorphism and the risk of UC (fixed effects). The center of each square represents the OR, the area of the square is the number of sample and thus the weight used in the meta-analysis, and the horizontal line indicates the 95% CI. (1) Recessive model. (2) Dominant model. (3) T/T vs. C/C. (4) C/T vs. C/C. (5) Additive model

Click here to view
Figure 4: Forest plots of ORs with 95% CI for TNFSF15 rs7848647 polymorphism and the risk of CD (random effects). The center of each square represents the OR, the area of the square is the number of sample and thus the weight used in the meta-analysis, and the horizontal line indicates the 95% CI. (1) Recessive model. (2) Dominant model. (3) T/T vs. C/C. (4) C/T vs. C/C. (5) Additive model

Click here to view
Figure 5: Forest plots of ORs with 95% CI for TNFSF15 rs6478108 polymorphism and the risk of CD (random effects). The center of each square represents the OR, the area of the square is the number of sample and thus the weight used in the meta-analysis, and the horizontal line indicates the 95% CI. (1) Recessive model. (2) Dominant model. (3) T/T vs. C/C. (4) C/T vs. C/C. (5) Additive model

Click here to view
Table 2: Results of meta-analysis for TNFSF15 polymorphisms and the risk of IBD

Click here to view


Heterogeneity and sensitivity analyses

The results of heterogeneity test indicated that there was no significant heterogeneity for all polymorphisms of UC across studies [Table 2]. However, we found heterogeneity for CD [Table 2]. Although one study deviated from HWE for the rs3810936 polymorphism, one study deviated from HWE for the rs7848647 polymorphism and two studies deviated from HWE for the rs6478108 polymorphism, the corresponding pooled ORs were not altered by including or not including these studies [Table 2]. Additionally, we also evaluated the influence of each individual study on the pooled ORs by sequential omission of individual studies. The results showed that the pooled ORs of these three polymorphisms were not materially altered by the contribution of any individual study, suggesting that the results of this meta-analysis are credible (data also not shown).

Publication bias

Both Begg's funnel plot and Egger's test were performed to assess the publication bias of literature. All these three genetic polymorphisms showed consistent results, indicating no evidence of publication bias in the meta-analysis. If we take rs3810936 polymorphism as an example, the shapes of the funnel plot did not indicate any evidence of obvious asymmetry in these five models [Figure 6], and the Egger's test suggested the absence of publication bias (P = 0.354 for T/T vs. C/C, P = 0.128 for C/T vs. C/C, P = 0.496 for recessive model, P = 0.107 for dominant model, and P = 0.216 for additive model).
Figure 6: Begg's funnel plots of TNFSF15 rs3810936 polymorphism and the risk of CD for publication bias test. Each point represents a separate study for the indicated association. Log (OR), natural logarithm of OR. Horizontal line, mean effect size. (1) Recessive model. (2) Dominant model. (3) T/T vs. C/C. (4) C/T vs. C/C. (5) Additive model

Click here to view



   Discussion Top


TNFSF15, a member of the tumor necrosis factor super family, plays an important role in activation and proliferation of T cells. An increased expression level of TNFSF15 in intestinal lamina propria cells correlated with the degree of intestinal inflammation in CD and UC patients. This was accompanied by cytokine-induced interferon-gamma production by CCR9+ mucosal and gut-homing T cells, resulting in generation of enhanced Th1 responses and mucosal inflammation. TNFSF15 encodes a ligand for the receptor of TNFRSF25 and a decoy receptor of TNFRSF21/DR6 and has been shown to respond to a bacterial infection and to activate the nuclear factor-κB pathway. Although epidemiological studies investigate the association of TNFSF15 polymorphisms with CD and UC risk, the individual studies might have been underpowered to detect the overall effect of polymorphisms on the susceptibility to CD and UC, and our meta-analysis enhances the statistical power.

To the best of authors’ knowledge, this is the first meta-analysis undertaken so far of the largest and most comprehensive assessment of the relationship between the TNFSF15 polymorphisms and the risk of CD and UC. Overall, our results suggest that rs3810936, rs7848647, and rs6478108 polymorphisms in TNFSF15 gene were associated with decreased risk of CD in all genetic models, which was consistent with the conclusion of individual studies involving these three polymorphisms. However we detected that only rs3810936 polymorphism might have a protective association of UC.

There was considerable heterogeneity for all polymorphisms of CD across studies but not in UC. The source of heterogeneity might have come from different genetic backgrounds, population stratification, and selection bias. The GWAS studies on SNP in IBD are highly specialized and may likely never go beyond the design of case–control studies. The number of published studies was not sufficiently large for stratified analysis in different ethnicities. In this meta-analysis, we performed sensitivity analyses to check the robustness of our conclusion and the corresponding pooled ORs were not changed. In addition, we comprehensively assessed the publication bias using several means including the Begg's and Egger's tests as well as funnel plot tests, indicating no publication bias for these three genetic polymorphisms. In view of this, we are strongly convinced that the methods are appropriate and well described and the results or data of our meta-analysis, in essence, are sound and reliable.

When interpreting the results of the current study, some limitations should be addressed. First, the number of subjects and studies included in the meta-analysis were small to reveal the associations with IBD and lack the original data for the included studies, thus limiting further evaluation of the association between IBD risk and other risk factors, such as age, gender, environment factors, and other variables, which might have caused serious confounding bias. Second, we did not estimate the potential interactions among gene–gene, gene–environment, or even various polymorphisms loci of the same gene, which may alter the risk of IBD. Although the analysis of haplotype can increase the power to detect disease associations, our study was limited by analyzing a single SNP site owing to only one study focusing on TNFSF15 haplotype. Third, some inevitable publication bias might exist in the results because only published studies were retrieved, although the funnel plot and Egger's test indicated no remarkable publication bias.


   Conclusion Top


In summary, this meta-analysis provides evidence that rs3810936, rs7848647, and rs6478108 polymorphisms may contribute to protective factor of CD. Nevertheless, large-scale, well-designed, and population-based studies are needed to investigate the combined effects of these variants within TNFSF gene and IBD, which may eventually lead to better comprehensive understanding of their possible roles in the pathogenesis of IBD.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Fischbach MA, Segre JA. Signaling in host-associated microbial communities. Cell 2016;164:1288-300.  Back to cited text no. 1
    
2.
Wlodarska M, Kostic AD, Xavier RJ. An integrative view of microbiome-host interactions in inflammatory bowel diseases. Cell Host Microbe 2015;17:577-91.  Back to cited text no. 2
    
3.
Cho JH, Brant SR. Recent insights into the genetics of inflammatory bowel disease. Gastroenterology 2011;140:1704-12.  Back to cited text no. 3
    
4.
Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011;474:307-17.  Back to cited text no. 4
    
5.
Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van Treuren W, Ren B, et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 2014;15:382-92.  Back to cited text no. 5
    
6.
Imielinski M, Baldassano RN, Griffiths A, Russell RK, Annese V, Dubinsky M, et al. Common variants at five new loci associated with early-onset inflammatory bowel disease. Nature Genet 2009;41:1335-40.  Back to cited text no. 6
    
7.
Bamias G, Martin C 3rd, Marini M, Hoang S, Mishina M, Ross WG, et al. Expression, localization, and functional activity of TL1A, a novel Th1-polarizing cytokine in inflammatory bowel disease. J Immunol (Baltimore, Md: 1950) 2003;171:4868-74.  Back to cited text no. 7
    
8.
Papadakis KA, Zhu D, Prehn JL, Landers C, Avanesyan A, Lafkas G, et al. Dominant role for TL1A/DR3 pathway in IL-12 plus IL-18-induced IFN-gamma production by peripheral blood and mucosal CCR9+T lymphocytes. J Immunol (Baltimore, Md: 1950) 2005;174:4985-90.  Back to cited text no. 8
    
9.
Yamazaki K, McGovern D, Ragoussis J, Paolucci M, Butler H, Jewell D, et al. Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn's disease. Hum Mol Genet 2005;14:3499-506.  Back to cited text no. 9
    
10.
Thakkinstian A, McElduff P, D'Este C, Duffy D, Attia J. A method for meta-analysis of molecular association studies. Stat Med 2005;24:1291-306.  Back to cited text no. 10
    
11.
Cochran W. The combination of estimates from different experiments. Biometrics 1954;10:101-29.  Back to cited text no. 11
    
12.
Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ (Clinical research ed) 2003;327:557-60.  Back to cited text no. 12
    
13.
Mantel HW. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Instt 1959;22:719-48.  Back to cited text no. 13
    
14.
DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177-88.  Back to cited text no. 14
    
15.
Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical research ed) 1997;315:629-34.  Back to cited text no. 15
    
16.
Baskaran K, Pugazhendhi S, Ramakrishna BS. Protective association of tumor necrosis factor superfamily 15 (TNFSF15) polymorphic haplotype with ulcerative colitis and Crohn's disease in an Indian population. PLoS One 2014;9:e114665.  Back to cited text no. 16
    
17.
Lee YJ, Kim KM, Jang JY, Song K. Association of TNFSF15 polymorphisms in Korean children with Crohn's disease. Pediatr Int 2015;57:1149-53.  Back to cited text no. 17
    
18.
Nakagome S, Chinen H, Iraha A, Hokama A, Takeyama Y, Sakisaka S, et al. Confounding effects of microbiome on the susceptibility of TNFSF15 to Crohn's disease in the Ryukyu Islands. Hum Genet 2017;136:387-97.  Back to cited text no. 18
    
19.
Tremelling M, Berzuini C, Massey D, Bredin F, Price C, Dawson C, et al. Contribution of TNFSF15 gene variants to Crohn's disease susceptibility confirmed in UK population. Inflamm Bowel Dis 2008;14:733-7.  Back to cited text no. 19
    
20.
Yang SK, Lim J, Chang HS, Lee I, Li Y, Liu J, et al. Association of TNFSF15 with Crohn's disease in Koreans. Am J Gastroenterol 2008;103:1437-42.  Back to cited text no. 20
    

Top
Correspondence Address:
Dr. Qing He
Department of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen, University (Guangdong Gastrointestinal Hospital), Guangzhou, Guangdong,
People's Republic of China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/sjg.SJG_5_18

Rights and Permissions


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6]
 
 
    Tables

  [Table 1], [Table 2]



 

Top
  
 
  Search
 
  
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
   Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed2455    
    Printed45    
    Emailed0    
    PDF Downloaded121    
    Comments [Add]    

Recommend this journal