11/26/2010 The value of endoscopic resection for non-ampullary duodenal lesions: A single-center experience Li Z, Dou L, Liu Y, Zhang Y, He S, Zhu J, Ke Y, Liu X, Liu Y, Ng H, Wang G, - Saudi J Gastroenterol
Saudi Journal of Gastroenterology
Home About us Instructions Submission Subscribe Advertise Contact Login    Print this page  Email this page Small font sizeDefault font sizeIncrease font size 
Users Online: 1090 

Previous Article  Table of Contents Next Article  
ORIGINAL ARTICLE  
Year :   |  Volume :   |  Issue :   |  Page :
The value of endoscopic resection for non-ampullary duodenal lesions: A single-center experience


 Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Click here for correspondence address and email
Date of Submission26-Nov-2020
Date of Acceptance13-Jan-2021
Date of Web Publication12-Feb-2021
 

   Abstract 


Background: To observe and preliminarily evaluate the efficacy and safety of endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) in the treatment of non-ampullary duodenal lesions (NADLs).
Methods: This retrospective observational study included 84 patients who underwent endoscopic resection (ER) with non-ampullary duodenal lesions, between March 2010 and November 2020, at the Cancer Hospital of the Chinese Academy of Medical Sciences (Beijing, China). Data on patient demographics, therapeutic outcomes, and follow-up results were analyzed.
Results: There were 44 patients undergoing EMR, and 40 patients accepting ESD. The overall en bloc resection rate was 98.8% (83/84). For the neoplastic lesions, the overall en bloc resection rate and curative rate were 98.5% (67/68) and 89.7% (61/68), respectively. The procedure-related bleeding and perforation rates were 2.4% and 10.7%, respectively. Univariate analysis results indicated that the main correlation factor of non-curative pathologic resection was tumor size (p = 0.004) and resection size (P < 0.01). There showed a higher curative rate in patients with tumors less than 25 mm in diameter. Multivariate logistic regression analyses determined that the tumor size (OR 0.935; 95% CI 0.878-0.995; P = 0.035) was associated with non-curative resection. No recurrences were observed in patients who had undergone a complete ER during a follow-up period of 42.8 months (range, 3-127 months).
Conclusion: Endoscopic resection is an effective, safe, and feasible treatment for non-ampullary duodenal lesions.

Keywords: Endoscopic resection, non-ampullary duodenal lesions


How to cite this URL:
Li Z, Dou L, Liu Y, Zhang Y, He S, Zhu J, Ke Y, Liu X, Liu Y, Ng H, Wang G. The value of endoscopic resection for non-ampullary duodenal lesions: A single-center experience. Saudi J Gastroenterol [Epub ahead of print] [cited 2021 Feb 26]. Available from: https://www.saudijgastro.com/preprintarticle.asp?id=309288

Authors Zhengqi Li and Lizhou Dou contributed equally to the article





   Introduction Top


The possibility of finding a duodenal lesion in a patient on upper endoscopy is low, with studies reporting rates from less than 1%.[1],[2] Recently, with the rapid development of endoscopic diagnosis and endoscopic resection (ER), many epithelial tumors in esophagus, stomach, and colon can be treated, of which the endoscopic mucosal resection (EMR) and the endoscopic submucosal dissection (ESD) are representative.[3],[4],[5] There are also guidelines for the endoscopic resection in esophagus, stomach and colon.[6],[7],[8] However, there is still no guideline for the endoscopic resection in duodenum, although many researches have reported such a technique.[1],[9],[10] Therefore, the aim of this study was to investigate the clinical outcomes in patients with duodenal lesions who accepted the ER operation and to determine possible predictive factors for non-curative resection.

The endoscopic resection of duodenal lesions is challenging. Factors include (1) the narrow lumen which restricts the movement of endoscope, especially in some flexible actions like flipping, (2) the “C-loop” shape that makes maintaining endoscope position difficult, (3) the short external endoscope, which makes stabilizing the endoscope hard, (4) the Brunner's glands in the submucosal layer that stiffen the wall and make mucosal lifting difficult, (5) the poor extensibility of mucous membrane and the difficulty encountered for suture, (6) the thin deep muscle layer that results in a higher rate of perforation, (7) rich blood supply, and (8) the difficult access if emergency or salvage surgery becomes necessary.[1] Considering all the factors above, the ER of duodenal lesions is the most difficult among that of the whole digestive tract.


   Patients and Methods Top


Patients

We retrospectively analyzed our database of all patients who underwent a duodenal ER at the Cancer Hospital of the Chinese Academy of Medical Sciences (Beijing, China) between March 2010 and November 2020. A total of 84 patients who had non-ampullary duodenal lesions underwent ER. All the patients agreed to undergo ER after they were given detailed explanations of the risks and benefits associated with the procedure, which included the complications associated with ER and a possible need for an additional surgical treatment. Written informed consent was obtained from all the patients before they underwent ER, and the study protocol was reviewed and approved by the Clinical Trials Center of National Cancer Center.

Pre-resection evaluation

All the patients underwent a NBI, a magnifying endoscopy and a staining endoscopy. If necessary, endoscopic ultrasound and duodenoscopy were applied to show the lesion. In addition, all patients were examined by abdominal computed tomography (CT) to confirm that there is no invasion of lymph nodes or distant metastasis before the procedure. Additionally, if it was difficult to judge the position relation of the lesion and bile papilla, magnetic resonance cholangiopancreatography (MRCP) was done.

Endoscopic resection

All the ERs (EMR or ESD) were performed by experienced endoscopists in Cancer Hospital of the Chinese Academy of Medical Sciences, while patients were under general anesthesia with cardiorespiratory monitoring. A conventional single-channel endoscope (GIFQ260, GIF-H260, Olympus) was used. For EMR, a normal saline solution mixed with a small amount of epinephrine (0.002 mg/mL), indigo carmine dye and sodium hyaluronate were injected into the submucosal layer to reduce the risks of perforation and hemorrhage. The tumor was then resected using a snare (Olympus Co., Tokyo, Japan) [Figure 1]. For ESD, a normal saline solution mixed with a small amount of epinephrine (0.002 mg/mL), indigo carmine dye and sodium hyaluronate were injected into the submucosal layer around the tumor and then a circumferential incision was made using a dual knife (Olympus Co., Tokyo, Japan) or an insulation-tipped (IT) nano knife (Olympus Co., Tokyo, Japan). Afterwards, the normal tissue just beneath the tumor was dissected directly using the dual knife or the IT nano knife after an additional injection of saline beneath the lesion to sufficiently separate the lesion from the proper muscle layer.
Figure 1: Endoscopic mucosal resection of a high grade intraepithelial neoplasia. (a) An epithelial tumor was present in the descendant duodenum. (b) The narrow band imaging was used to show the lesion. (c) A saline solution containing a small amount of epinephrine, indigo carmine dye and sodium hyaluronate was injected beneath the lesion to elevate the lesion. (d) The lesion was aspirated into the ligation device, followed by deployment of the elastic band. Then, a snare resection was performed using a blended electrosurgical current. (e) Metal clips were used to close the wound. (f) The resected specimen

Click here to view


After removing the lesion, electrosurgical hemostatic forceps (FD-410LR, Olympus, Tokyo, Japan) were used on the mucosal defect to prevent and control bleeding. LOCKADO clips (Micro Tech, Nanjing, China) were used to close the mucosal defect to prevent postoperative bleeding and perforation. As part of standard practice in our center, all mucosal defects after endoscopic resection are closed.

Aftercare

For the EMR patients, they were fasted for 1 day. On the second day, they were allowed to drink water and the routine blood test and blood biochemistry was done. On the third day, they were allowed to eat full flow food. On the fourth day, they were allowed to eat semiliquid diet and the gastric tube was removed. On the fifth day, they were allowed to eat soft diet and were allowed to be discharged on the seventh day. The patients received a continuous intravenous drip of a proton pump inhibitor (PPI) twice a day for two days. PPI medicine was taken for 2 weeks.

For ESD patients, they were fasted for 2 days. On the second day, the routine blood test and blood biochemistry was done. On the third day, they were allowed to drink water. Full flow diet was allowed on the fourth day. On the fifth day, they were allowed to eat semiliquid diet and the gastric tube was removed. On the sixth day, they were allowed to eat soft diet and were discharged on the seventh day. The patients received a continuous intravenous drip of a PPI twice a day for 3 days, followed by oral PPI for 2 weeks. In addition, intravenous octreotide was given at a dose of 1.2 mg a day for 3 days.

It should be noted that the above is a routine schedule. If complications occurred, extra treatment was adopted.

Histopathologic evaluation

The formalin-fixed resected specimens were serially sectioned at 2-mm intervals, and tumor involvement of the horizontal and vertical margins was assessed. In addition, if the lesion was diagnosed as a carcinoma, the histopathologic type, tumor size, depth of invasion, and lymphovascular invasion were evaluated microscopically.

Outcome parameters

The primary outcome parameter was the success of the ERs, including the en bloc resection rates and the curative resection rate. En bloc resection was defined as the resection of the lesion as a single piece. Curative resection was defined based on the following criteria: (1) performance of an en bloc resection; (2) no involvement of the lateral or vertical margins, and, in cases of carcinoma, tumor invasion was limited to the submucosal layer, and lymphovascular invasion was not additionally detected.[6],[7]

The secondary outcome parameters were the procedure time, procedure-related complications, and the local recurrence rate. The procedure time was defined as the time from the start of the injection of the saline solution to the complete removal of the lesion. Procedure-related bleeding was defined as bleeding shown via endoscopic evaluation within 2 weeks, clinical evidence of melena or hematemesis, or massive bleeding requiring transfusion. Perforation was diagnosed on the presence of free air on post-procedural chest or abdomen radiographs.

Follow-up

Patients with abdominal pain underwent post-procedural chest and abdominal radiography. Post-procedural discharges were carried out within 5-7 days. When the pathologic results showed benign lesions, follow-up endoscopy was conducted at the third month after the ER and annually thereafter. Follow-up endoscopy, and abdominal CT were performed at the 12th month after the ER and annually thereafter.

Statistical analysis

Variables were expressed as medians and ranges or as simple proportions. Univariate analyses were performed where continuous variables were analyzed using the Mann–Whitney U test and categorical variables were analyzed using the Chi-squared test or Fisher's exact test as appropriate. Multivariate logistic regression analysis was used to identify possible covariates that were significant predictors of non-curative resection. All statistical analyses were performed with SPSS version 25.0 for Windows software (SPSS Inc., Chicago, IL, USA) and P < 0.05 was considered statistically significant.


   Results Top


Demographics and clinicopathologic characteristics

The baseline clinicopathologic characteristics of the patients and the neoplasms were summarized in [Table 1]. This study included 84 patients with 53 men and 31 women with a median age of 57.2 years (range, 35–78 years). The median size of the lesions was 17.5 mm (range, 2–56 mm). There were 32 lesions (38.1%) located in the bulb, 17 lesions (20.2%) located in the junction of bulb and descendant duodenum and 35 lesions (41.7%) located in the descendant duodenum.
Table 1: Demographic characteristics of the patients and neoplasms

Click here to view


Outcomes from the endoscopic resection

The overall en bloc resection rate of all lesions was 98.8% (83/84). [Table 2] shows the treatment outcomes from the ERs of duodenal neoplasms. The median resection size of EMR was 12.3 mm in diameter, which was smaller than that of ESD (26.6 mm) (P < 0.01). EMR was performed on 44 lesions (52.4%), while ESD on 40 lesions (47.6%). The median procedure time of ESD was 86.5 min, which was longer than the procedure time of EMR (21.6 min) (P < 0.01). It showed a higher rate of complications in ESD than that in EMR (P < 0.01). Delayed bleeding was noted in 2 cases (2.4%), which had undergone EMR, both with tumors located in the descendant duodenum. Bleeding was controlled successfully with endoscopic electrocoagulation and hemoclipping. Perforation occurred during ER in 9 cases (10.7%), and all were closed immediately by hemoclips. As a result, all of these patients recovered non-operatively. One patient underwent delayed perforation and recovered non-operatively with total parenteral nutrition, gastrointestinal decompression, and intravenous antibiotics for 5 weeks.
Table 2: Treatment outcomes after endoscopic resection of duodenal lesions according to the treatment methods

Click here to view


Clinical results of the ER of neoplastic lesions

[Table 3] shows the treatment outcomes of the ERs of duodenal neoplasms. Considering all the neoplastic lesions (well-differentiated neuroendocrine tumor, gastrointestinal stromal tumor, tubular adenoma, low-grade intraepithelial neoplasia, high grade intraepithelial neoplasia, adenocarcinoma), the overall en bloc resection rate and the curative rate were 98.5% (67/68) and 89.7% (61/68), respectively. There were 32 patients (47.1%) with duodenal tumors receiving EMR operations, while 36 (52.9%) underwent ESD.
Table 3: Treatment outcomes after endoscopic resection of duodenal neoplastic lesions according to the treatment methods

Click here to view


Factors associated with non-curative resection

In the univariate analyses, the tumor size and resection size appeared to be significantly associated with non-curative pathologic resection (P = 0.004 and <0.01, respectively) [Table 4]. With tumor sizes less than 25 mm in diameter, a higher curative rate was observed. On the other hand, multivariate logistic regression analysis showed that only tumor size (OR0. 935; 95%CI 0. 878-0. 995; P = 0.035) was associated with non-curative resection [Table 5].
Table 4: Univariate analyses of the predictive factors for curative pathologic resection after endoscopic resection of duodenal neoplastic lesions

Click here to view
Table 5: Multivariate logistic regression analyses of the predictive factors for curative resection after endoscopic resection of duodenal neoplastic lesions

Click here to view


Follow-up

Of the 84 patients, the median follow-up period was 42.8 months (range, 3-127 months). No tumor recurrences were observed in any of the patients in whom complete ERs were achieved, irrespective of whether a curative resection was performed. One patient with neuroendocrine tumor non-curative resection underwent an additional surgical resection 3 months after ER and lived without recurrence for the next 37 months.


   Discussion Top


The prevalence of non-ampullary duodenal lesions is extremely low, mainly including Brunner's gland hyperplasia, neuroendocrine tumor, lipoma, ectopic gastric mucosa, inflammatory fibroid polyp, gastrointestinal stromal tumor, tubular adenoma, leiomyoma, low grade intraepithelial neoplasia, high grade intraepithelial neoplasia, and adenocarcinoma.[1],[2] In the past, non-ampullary duodenal lesions were treated mainly with surgical operations, with a high perioperative mortality rate and many postoperative complications.[1],[2],[11] With the development of endoscopic instruments and the maturity of endoscopic technique, endoscopic resection (mainly including EMR and ESD) has been widely used in the treatment of early gastrointestinal tumors.[12] However, despite recent advances, ER is not easy in the duodenum. First, the anatomical position of duodenum is relatively special as it connects the stomach and jejunum and stays close to the posterior abdominal wall, and is relatively fixed. Moreover, because of its rich blood supply, relatively thin wall, and narrow lumen for the endoscopic action, complications such as perforation and bleeding are easy to occur after ER operation, which increases the difficulty and risks of endoscopic treatment.[13],[14]

The important goal of ER is to obtain curative resection.[15],[16] In our study, compared with ESD, EMR operation is less difficult with shorter operation time but smaller resection size. There were no local recurrences during the median follow-up period of 42.8 months (range 3-127 months). Curative resection was influenced significantly by the tumor size. Previous studies have shown that tumor diameter ≥20 mm is a predictive risk factor for metastasis.[13],[14] Our results illustrated that the tumor diameter ≤25 mm indicated a higher curative rate. In the multivariate analyses tumor size was a significant predictor of non-curative resection. These findings could assist practitioners to assess an ER operation for a non-ampullary duodenal lesion in advance in order to avoid unnecessary potential risks.

In spite of a higher en bloc resection rate in ESD, when compared with EMR, the procedure time of ESD is prolonged therefore, the risk of perforation and hemorrhage is increased.[2],[17],[18] Our research showed that in comparison with EMR, the median resection size in ESD was much larger with a higher perforation rate. In our study, 9 patients with perforation received clamping with metal clips or the “bag suture”.[19] Only one of our patients suffered from a delayed perforation, who was cured non-operatively by fasting, gastrointestinal decompression, and intravenous antibiotics for 5 weeks.

The postoperative bleeding rate after EMR or ESD for the rectal carcinoid tumors has been reported to be approximately 3–6%.[18],[20] To avoid such events, it is important to confirm the bleeding vessel during the procedure, and to clamp the vessel by thermal biopsy forceps or burn it with argon after the operation. It is important to place a stomach tube and a nutrition tube so as to observe the drainage's color to identify delayed bleeding as soon as possible. In our study, the 2 delayed bleeding patients were treated immediately with endoscopic hemostasis.

Routine gastrointestinal decompression is needed after endoscopic treatment of duodenal lesions, because a lot of gases are accumulated in the patient's digestive tract and the duodenal wall is edematous due to some physical irritants during the procedure.[2] Gastrointestinal decompression can help patients drain gas and greatly reduce the incidence of postoperative abdominal pain and delayed perforation.[21] In addition, gastrointestinal decompression is also helpful for practitioners to observe the possibility of delayed bleeding after operation. According to our past experience, we advise practitioners to place both a gastric tube and a duodenal nutrition tube.

This study has several limitations. First, it is a retrospective study conducted in a single center. Second, the sample size is relatively small and the follow-up period of this study is somewhat insufficient to accurately assess the outcomes of endoscopic resection. Multi-institutional studies and larger population-based datasets are needed in future to obtain relatively accurate results.

To sum up, the ER of duodenal lesions is safe and effective. EMR and ESD can achieve en block resection of duodenal lesions and obtain curative resection, with small operation trauma, mild postoperative pain, and fast recovery. However, the incidence of complications is relatively high. Owing to the difficulties of ER in duodenum mentioned above, it is recommended that the operation should be performed by experienced doctors.

With the early detection of duodenal lesions by endoscope, the improvement of endoscopic treatment techniques and the accumulation of experience, the success rate of EMR and ESD in the treatment of duodenal lesions will continue enhancing, such procedures could become the best treatment for early duodenal space-occupying lesions.

Acknowledgements

This research was supported by grants from (1) Sanming Project of Medicine in Shenzhen (No. SZSM2019110080); (2) CAMS Innovation Fund for Medical Sciences (CIFMS),(grant no. 2016-I2M-001, 2017-I2M-1-001, 2019- I2M-2-004);(3) the National Key Research and Development Program of China (grant no. 2016YFC1302800,2018YFC1313103); (4) the PUMC Youth Fund and the Fundamental Research Funds for the Central Universities (grant no. 2017320012); (5) the PUMC Graduate Innovation Fund (grant No. 2019-1002-81).

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Gaspar JP. Approach to the endoscopic resection of duodenal lesions. World J Gastroenterol 2016;22:600-17.  Back to cited text no. 1
    
2.
Inoue T, Uedo N, Yamashina T, Yamamoto S, Hanaoka N, Takeuchi Y, et al. Delayed perforation: A hazardous complication of endoscopic resection for non-ampullary duodenal neoplasm. Digest Endosc 2014;26:220-7.  Back to cited text no. 2
    
3.
Yamasaki Y, Takeuchi Y, Kanesaka T, Kanzaki H, Kato M, Ohmori M, et al. Differentiation between duodenal neoplasms and non-neoplasms using magnifying narrow-band imaging – Do we still need biopsies for duodenal lesions? Digest Endosc 2020;32:84-95.  Back to cited text no. 3
    
4.
Hossain E, Alkandari A, Bhandari P. Future of endoscopy: Brief review of current and future endoscopic resection techniques for colorectal lesions. Digest Endosc 2020;32:503-11.  Back to cited text no. 4
    
5.
Kim SJ, Choi CW, Nam HS, Kang DH, Kim HW, Park SB, et al. Factors associated with conversion to snare resection during gastric endoscopic submucosal dissection. Surg Endosc 2020;34:1585-91.  Back to cited text no. 5
    
6.
Kuwano H, Nishimura Y, Oyama T, Kato H, Kitagawa Y, Kusano M, et al. Guidelines for diagnosis and treatment of carcinoma of the esophagus April 2012 edited by the Japan Esophageal Society. Esophagus 2015;12:1-30.  Back to cited text no. 6
    
7.
Watanabe T, Muro K, Ajioka Y, Hashiguchi Y, Ito Y, Saito Y, et al. Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2016 for the treatment of colorectal cancer. Int J Clin Oncol 2018;23:1-34.  Back to cited text no. 7
    
8.
Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2010 (ver. 3). Gastric Cancer 2011;14:113-23.  Back to cited text no. 8
    
9.
Chathadi KV, Khashab MA, Acosta RD, Chandrasekhara V, Eloubeidi MA, Faulx AL, et al. The role of endoscopy in ampullary and duodenal adenomas. Gastrointest Endosc 2015;82:773-81.  Back to cited text no. 9
    
10.
Kim TW, Kim GH, Park DY, Ahn S, Lim W, Lee BE, et al. Endoscopic resection for duodenal subepithelial tumors: A single-center experience. Surg Endosc 2017;31:1936-46.  Back to cited text no. 10
    
11.
Jung SH. Evaluation of non-ampullary duodenal polyps: Comparison of non-neoplastic and neoplastic lesions. World J Gastroenterol 2010;16:5474-80.  Back to cited text no. 11
    
12.
Yamamoto Y, Yoshizawa N, Tomida H, Fujisaki J, Igarashi M. Therapeutic outcomes of endoscopic resection for superficial non-ampullary duodenal tumor. Dig Endosc 2014;26(Suppl 2):50-6.  Back to cited text no. 12
    
13.
Hoteya S, Furuhata T, Takahito T, Fukuma Y, Suzuki Y, Kikuchi D, et al. Endoscopic submucosal dissection and endoscopic mucosal resection for non-ampullary superficial duodenal tumor. Digestion 2017;95:36-42.  Back to cited text no. 13
    
14.
Hatta W, Koike T, Iijima K, Asanuma K, Asano N, Musha H, et al. The risk factors for metastasis in non-ampullary duodenal neuroendocrine tumors measuring 20 mm or less in diameter. Digestion 2017;95:201-9.  Back to cited text no. 14
    
15.
Valerii G, Tringali A, Landi R, Boškoski I, Familiari P, Bizzotto A, et al. Endoscopic mucosal resection of non-ampullary sporadic duodenal adenomas: A retrospective analysis with long-term follow-up. Scand J Gastroenterol 2018;53:490-4.  Back to cited text no. 15
    
16.
Pavlovic-Markovic A, Dragasevic S, Krstic M, Stojkovic Lalosevic M, Milosavljevic T. Assessment of duodenal adenomas and strategies for curative therapy. Dig Dis 2019;37:374-80.  Back to cited text no. 16
    
17.
Matsueda K, Kanzaki H, Matsueda K, Nasu J, Yoshioka M, Nakagawa M, et al. The clinicopathological differences of sporadic non-ampullary duodenal epithelial neoplasm depending on tumor location. J Gastroenterol Hepatol 2019;34:1540-4.  Back to cited text no. 17
    
18.
Hoteya S, Kaise M, Iizuka T, Ogawa O, Mitani T, Matsui A, et al. Delayed bleeding after endoscopic submucosal dissection for non-ampullary superficial duodenal neoplasias might be prevented by prophylactic endoscopic closure: Analysis of risk factors. Dig Endosc 2015;27:323-30.  Back to cited text no. 18
    
19.
Miura Y, Shinozaki S, Hayashi Y, Sakamoto H, Lefor AK, Yamamoto H. Duodenal endoscopic submucosal dissection is feasible using the pocket-creation method. Endoscopy 2017;49:8-14.  Back to cited text no. 19
    
20.
Kim GH, Kim JI, Jeon SW, Moon JS, Chung I, Jee S, et al. Endoscopic resection for duodenal carcinoid tumors: A multicenter, retrospective study. J Gastroenterol Hepatol 2014;29:318-24.  Back to cited text no. 20
    
21.
Wu Q, Lu ZZ, Linghu WQ, Li W, Huang QY, Wang XD, et al. Value of endoscopic resection on duodenal space-occupying lesions. Chin J Dig Endosc 2017;34:423-6.  Back to cited text no. 21
    

Top
Correspondence Address:
Guiqi Wang,
Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing - 100 021
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/sjg.sjg_646_20



    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5]



 

Top
Previous Article   Next Article
 
  Search
 
  Ahead Of Print
  
     Search Pubmed for
 
    -  Li Z
    -  Dou L
    -  Liu Y
    -  Zhang Y
    -  He S
    -  Zhu J
    -  Ke Y
    -  Liu X
    -  Liu Y
    -  Ng H
    -  Wang G
        PDF Version


    Abstract
   Introduction
   Patients and Methods
   Results
   Discussion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed71    
    PDF Downloaded2    

Recommend this journal